

NOUVELLES APPROCHES DE LA GESTION DE PATRIMOINE D'INFRASTRUCTURES

Pascal ROSSIGNY

CEREMA = Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement

Six champs d'intervention:

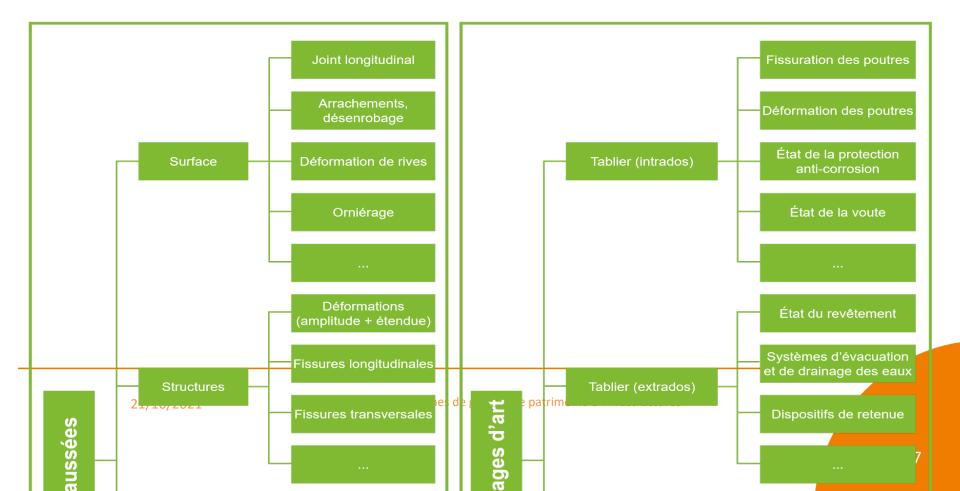
- Expertise et Ingénierie territoriale
- Bâtiment
- Mobilités
- Infrastructures de Transport
- Environnement et risques
- Mer et Littoral

L'IDRRIM (Institut Des Routes, des Rues et des Infrastructures pour la Mobilité) fédère l'ensemble des acteurs publics et privés de la communauté des infrastructures de transport. Plateforme d'échange, l'IDRRIM a pour vocation de répondre aux problématiques de ses adhérents, de concevoir des documents de référence et promouvoir le savoir-faire français à l'international.

L'INGÉNIERIE DE GESTION PATRIMONIALE APPLIQUÉE AUX INFRASTRUCTURES ROUTIÈRES

LES ÉTAPES DE LA GESTION PATRIMONIALE

- 1. Inventaire du patrimoine
- 2. Connaissance de l'état des infrastructures et de son évolution dans le temps
- 3. Définition d'une politique d'entretien à l'échelle du réseau
- 4. Adaptation de sa politique à l'état de ses infrastructures


COMMENT BÂTIR SA STRATÉGIE

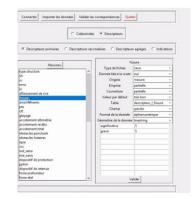
- 1. Identification des besoins d'entretien
- 3. Définition des priorités
- 4. Incidence du choix des techniques
- 5. Elaboration du budget
- 6. Évaluation des résultats et adaptation de sa stratégie

LES DESCRIPTEURS À RELEVER


pour les chaussées :

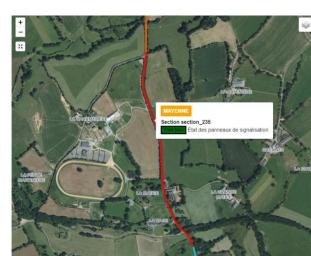
pour les ouvrages d'art :

LES MOYENS DE MESURE


n de patrimoine d'infrastructures

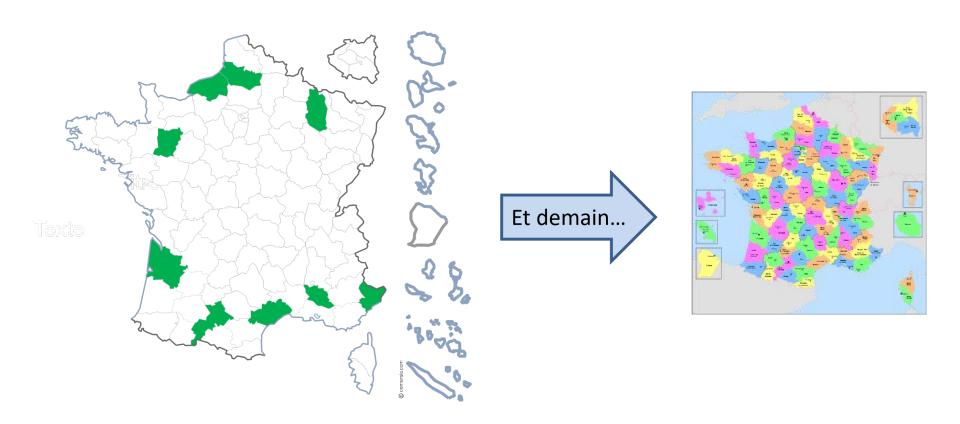
DU RELEVÉ AUX INDICATEURS

Relevé Terrain



Traitement
Base de données 2

Calcul de l'indicateur au pas élémentaire


LA GESTION PATRIMONIALE INTÉGRÉE

Prendre en compte:

- toutes les composantes du patrimoine d'infrastructures (chaussées, ouvrages d'art, équipements de la route,...)
- les enjeux socioéconomiques de chaque maillon
- l'évolution des usages, le niveau de service à assurer
- les risques, l'adaptation au changement climatique

Le projet GERESE

GEstion de REseau SEcondaire

INDICATEUR DE L'ÉTAT STRUCTUREL DE LA CHAUSSÉE

		Uni (transversal et/ou longitudinal) (3)			
Déformations en rive (1)	Fissures (2)	10 % (pour exemple)	30.00 % (pour exemple)	100 %	
10 % (pour exemple)	10 % (pour exemple)	1	1	2	
	30 % (pour exemple)	2	2	3	
	100 %	3	3	4	
<u>.</u>	10 % (pour exemple)	2	3	3	
	10 % (pour exemple)	3	3	4	
30 % (pour exemple)	100 %	3	4	5	
100 %	Quelque soit la fissuration	4	5	5	

⁽¹⁾ longueur ou surface des affaissements ≥20mm sur le pas élémentaire (PE) (2) longueur ou surface fissurée sur le PE (3) extension de la classe 3 (mauvais) sur le PE

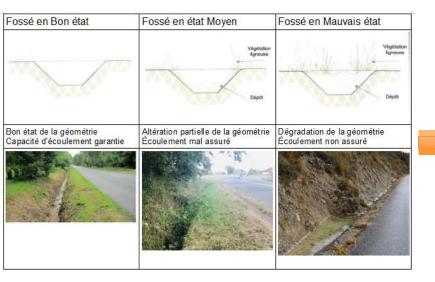
INDICATEUR DE L'ÉTANCHÉITÉ DE LA COUCHE DE SURFACE

	Fissures (1)		
Arrachements (2)	10 % (pour exemple)	30 % (pour exemple)	100 %
10 % (pour exemple)	1	2	3
30 % (pour exemple)	2	3	4
100 %	3	4	5

⁽¹⁾ longueur ou surface fissurée sur le Pas Élémentaire (PE) (2) longueur ou surface avec arrachement sur le PE

INDICATEUR DE L'ADHÉRENCE SUR LA CHAUSSÉE

	Texture (1)			
Glaçage/ressuage(2)	10 % (par exemple)	30 % (par exemple)	100 %	
10 % (par exemple)	i	2	3	
30 % (par exemple)	2	3	4	
100 %	3	4	5	


^{(1) %} de classe « Mauvais » sur le pas élémentaire (PE)

⁽²⁾ longueur ou surface avec glaçage/ressuage sur le PE

ON NE REGARDE PAS QUE LA CHAUSSÉE

INDICATEUR SUR L'ASSAINISSEMENT

Si approche qualitative

Indicateur qualité du fossé	% avec classe « Mauvais » sur le PE		
1 – Bon	< 25 % (par exemple)		
2 – Moyen	[25]; 50 %] (par exemple)		
3 – Mauvais > 50 %(par exemple)			

INDICATEUR SUR LA SIGNALISATION

Indicateur SV	Nombre de panneaux avec classe « Mauvais » sur le PE		
1 – Bon	< 2 (pour exemple)		
2 – Moyen	[2]; 10] (pour exemple)		
3 – Mauvais	> 10 (pour exemple)		

« Mauvais »

« Mauvais » : non lisible – message mal ou non perçu (délavé, graffiti, $\ldots)$

INDICATEUR SUR LES ACCOTEMENTS

Il est proposé les classes suivantes pour cet indicateur :

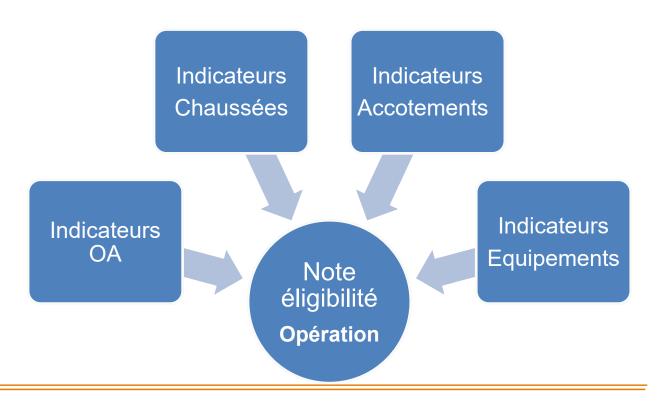
Classe Altimétrie Accotement	Altimétrie/chaussée	
Bon]-5 cm ; +5 cm[
Mauvais	≤ -5 cm ou ≥ +5 cm	

Il peut également être défini 3 classes (au lieu de 2, Bon/Mauvais) en fonction de l'altimétrie de l'accotement si l'un des seuils (positif ou négatif) est jugé plus néfaste par la collectivité pour des enjeux de sécurité ou d'assainissement :

Classe Accotement	Altimétrie	Altimétrie/chaussée
Bon]-5 cm ; +5 cm[
Médiocre		≥ +5 cm
Mauvais		≤ -5 cm

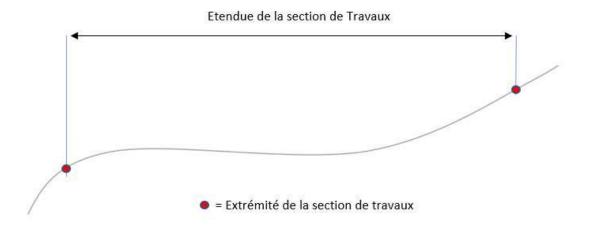
L'information du seuil positif ou négatif est également à conserver dans le cadre de la phase 3b – programmation des travaux pour la problématique des travaux de dérasement et d'assainissement

INDICATEUR SUR LA SÉCURITÉ DES ACCOTEMENTS

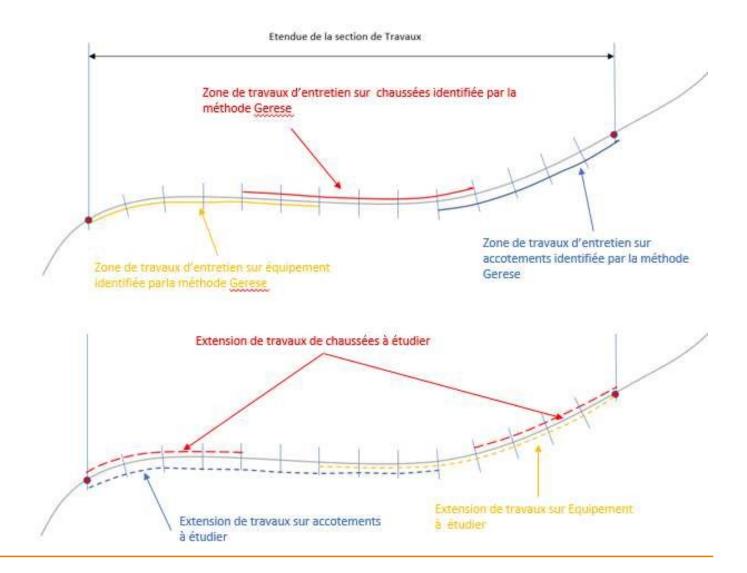

Classe Accotement sécurisé	Type de revêtement
Bon	accotement revêtu d'au moins 1m sans obstacle à moins de 4 m du bord de chaussée
Médiocre	accotement revêtu ou non avec obstacle entre 1,5m et 4m du bord de chaussée accotement revêtu ou non inférieur à 1m avec ou sans obstacle entre 1.5 et 4m
Mauvais	accotement avec obstacle à moins de 1,5m du bord de chaussée

Indicateur Accotement sécurisé

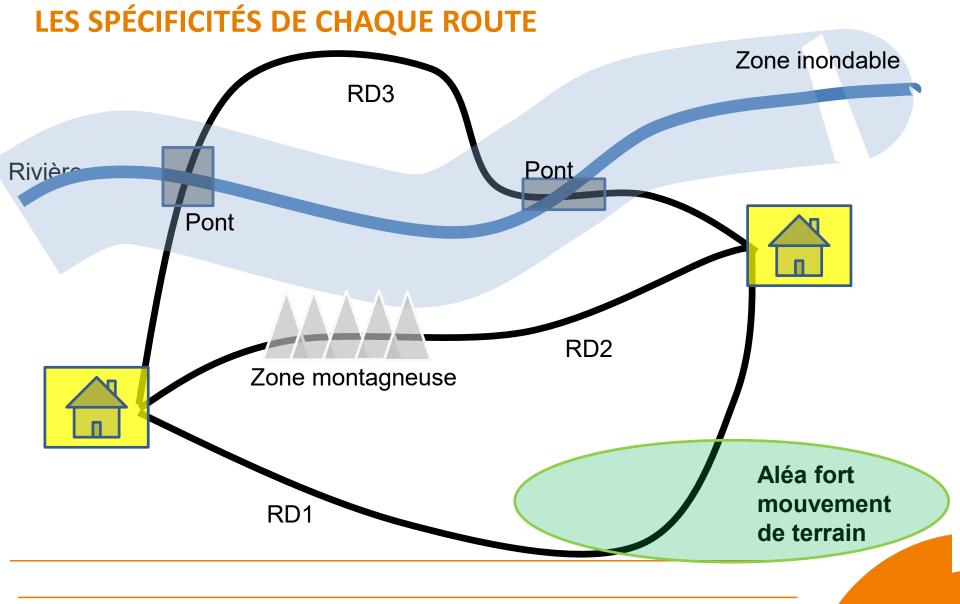
Pour l'indicateur Accotement sécurisé, il est proposé de retenir un seuil avec un % d'accotements classés « Mauvais » sur le pas élémentaire :

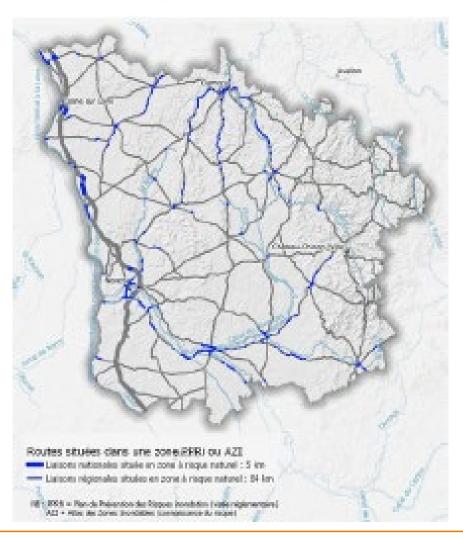

Indicateur Accotement sécurisé	% avec classe « Mauvais » sur le PE	
2 – Bon	< 25 % (par exemple)	
3 – Moyen	[25 ; 50 %] (par exemple)	
5 – Mauvais	> 50 %(par exemple)	

L'ÉLIGIBILITÉ D'UNE SECTION À L'ENTRETIEN

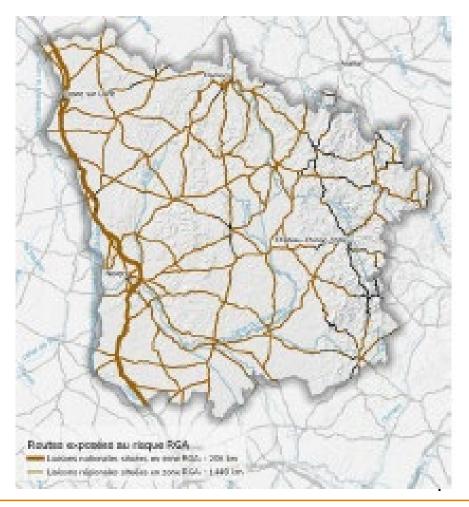

ÉTENDUE DES TRAVAUX

21/10/2021


Nouvelles approches de gestion de patrimoine d'infrastructures


21/10/2021

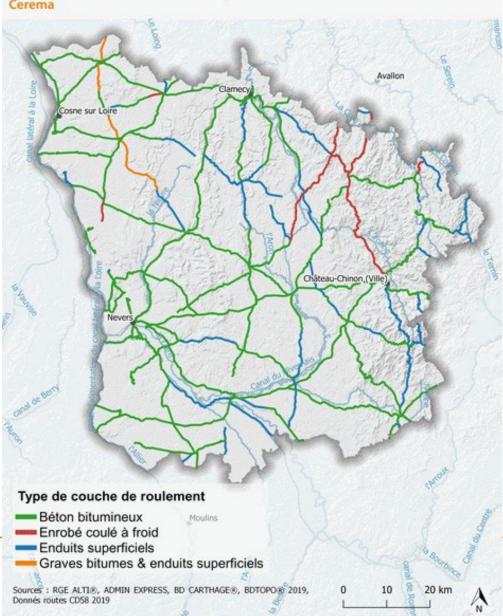
Nouvelles approches de gestion de patrimoine d'infrastructures


On se pose alors la question d'améliorer par la même occasion la résilience de l'infrastructure pour qu'elle résiste mieux aux événements climatiques

RISQUE INONDATION

RISQUES GEOTECHNIQUES

L'IMPACT DES ALÉAS CLIMATIQUES SUR LES CHAUSSÉES


	Extrême chaud, canicule	Précipitations intenses et ruissellement	Sécheresse (hors retrait-gonflement des argiles)	Inondations lentes, par débordement de cours d'eau ou remontée de nappe	Inondations éclair (crues rapides)
HORIZON : 2050 SCENARIO : RCP 8,5 Scénario vers lequel la Terre se dirige actuellement. TERRITOIRE : Département de la Nièvre	- Les températures moyenne annuelle augmente de + 2°C à+ 3°C. -+37 jours chauds(T°max>25°C) soit un doublement par rapport à la fin du XX eme siècle	Incertitudes sur l'évolution des précipitations extrêmes et donc, du ruissellement,	des sécheresses inhabituelles apparaissent particulièrement pour le Morvan	évolutions incertaines . Du fait de l'évolution de la répartition saisonnière des précipitations, on peut s'attendre à une augmentation des inondations qui sont déjà bien présentes sur le territoire	évolutions incertaines. Du fait de l'évolution de la répartition saisonnière des précipitations, on peut s'attendre à une augmentation des inondations
Chaussées	Vieillissement accéléré et dégradations des chaussées : orniérage, fissuration Les chaussées en enrobé bitumineux sont plus sensibles, surtout si elles sont exposées à un fort trafic poids lourd. Les joints de chaussées béton peuvent se soulever. Les chaussées en structure béton peuvent se mettre en butée et provoquer une déformation de la chaussées. Les chaussées en structure en enrobés bitumineux peuvent subir des déformations transversales accrues	Vieillissement accéléré et dégradations liées à l'infiltration de l'eau dans les matériaux de chaussée. Déformations des couches supérieures suite à une diminution de portance des couches inférieures. Dégradations des couches de roulement liées au transport solide de matériaux. Déformations des structures aggravées par la présence de fissures notamment dans les structures béton et matériaux non traités	Pas d'impact spécifique	Vieillissement accéléré et dégradations liées à l'infiltration de l'eau dans les matériaux de chaussée. Déformations des couches supérieures suite à une diminution de portance des couches inférieures. Détérioration de l'intégrité de la route en raison de l'humidité du sol support. Dégradation de la route en cas de remontée du niveau des nappes non prévu dans le dimensionnement. Dégradations liées au transport solide de matériaux.	Destruction partielle ou totale

Nouvelles approches de gestion de patrimoine d'infrastructures

Les différents types de couche de roulement sur le département

Certaines couches de roulement résistent moins bien que d'autres aux aléas climatiques

patrimoine d'infrastructures

Choisir des solutions techniques adaptées et prévoir des budgets supplémentaires pour améliorer la résilience des infrastructures exposées à des risques naturels et au changement climatique

NOTE D'INFORMATION

Choix et mise en œuvre des couches de surface dans les zones soumises à des conditions climatiques hivernales rigoureuses

Introduction

DÉCEMBRE 2020

Sommaire

- 1 I Introduction
- 2 I Cadre d'application
- 3 I Choix des matériaux
- 4 I Formulation
- 5 l Précautions de mise en œuvre
- 6 | Perspectives
- 7 | Conclusion

Lors de l'hiver 2009-2010, de nombreuses dégradations sont apparues sur les réseaux routiers du nord-est de la France. Suite à cet épisode, différents rapports d'experts ont été rédigés, notamment ceux de Daniel Pendarias (MTE / DIR / MARRN) et de Jean-François Corte et Pierre Garnier (MTE / CGEDD), tentant d'apporter des explications au phénomène constaté. Un suivi particulier de ce qui a été appelé « dégâts hivernaux » (décollement par plaques, nids de poule, faïençage, arrachements, etc.) a également été mis en place sur le réseau routier national.

C'est dans ce cadre qu'un groupe de travail IDRRIM a été constitué afin d'essayer de mieux comprendre les origines techniques de ces dégradations particulières.

Ce travail a permis d'identifier certains phénomènes récurrents influant sur la durée de vie des couches de roulement, notamment celles subissant des conditions climatiques rigoureuses.

Le présent document a pour objectif de proposer des recommandations aux maîtres d'ouvrages et maîtres d'œuvres, intervenant dans des zones soumises à des conditions hivernales rigoureuses à très rigoureuses afin de limiter ces risques.

NOTE D'INFORMATION

Entretien des chaussées routières : optimiser le coût global

1

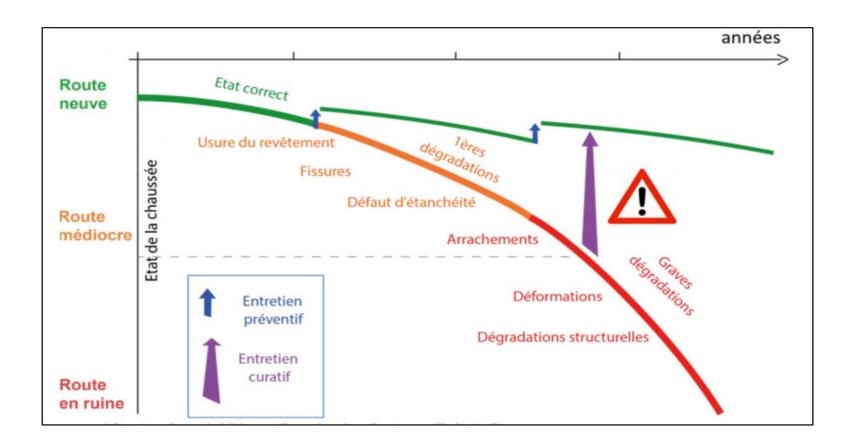
Introduction

1º 47 TEMBRE 2021

Sommaire

- 1 I Introduction
- 2 l Rappels sur l'entretien des chaussées
- 3 I Les niveaux d'endommagement de la chaussée
- 4 | Les techniques d'entretien économiques

L'entretien des réseaux routiers est un poste de dépense important pour les maîtres d'ouvrage et gestionnaires de ceux-ci. Il importe de pouvoir optimiser la dépense d'entretien à court, moyen et long terme en fonction des moyens budgétaires disponibles.


Après un bref rappel sur les enjeux de l'entretien des chaussées, cette note présente les techniques adaptées aux différents cas de figures et stratégies, en vue de l'optimisation des coûts. De nombreux ouvrages rappelés dans la bibliographie traitent de ce sujet mais ils sont souvent anciens et il est apparu important de faire un point d'actualité en cette période où le réseau routier français se dégrade du fait de budgets de plus en plus contraints. En outre ce document met l'accent sur des techniques émergentes, soit nouvelles soit en développement, notamment à l'émulsion, peu ou pas abordées dans les documents antérieurs. Les voies à faible et moyens trafics (≤ T1) constituent de loin le linéaire le plus important du réseau routier français en général et des collectivités en particulier. Cette note cible donc particulièrement cette typologie

INCIDENCE DU CHOIX DES TECHNIQUES

Selon la technique d'entretien retenue, la qualité d'usage de la chaussée est maintenue ou améliorée, sur des durées qui peuvent sensiblement varier en fonction des techniques.

Rechercher des solutions vertueuses, économes en ressource et en énergie (développement durable, moins de gaz à effet de serre).

LES CONSÉQUENCES D'UN ENTRETIEN DIFFÉRÉ

LA PRIORISATION DES INTERVENTIONS

Intervenir sur les éléments du patrimoine dont l'état structurel est le plus éloigné des objectifs est très coûteux et peut consommer tout le budget disponible pour traiter une faible longueur de réseau ; il ne faut pas pendant ce temps laisser tout le reste du réseau se dégrader alors que quelques actions préventives pour un coût modéré peuvent arrêter un processus de dégradation.

L'entretien courant permet de ralentir le processus de dégradation sur un linéaire significatif à l'échelle du réseau.

LA PRIORISATION DES INTERVENTIONS

Les travaux sur le réseau prioritaire, généralement le plus circulé, apportent davantage à l'usager (comparativement au nombre d'usagers concernés). Il n'est toutefois pas possible d'abandonner complètement le réseau secondaire afin d'éviter une dégradation trop importante de ce dernier.

LA LOGIQUE D'ITINERAIRE

Les travaux doivent être programmés selon une logique d'itinéraire, afin d'en maintenir l'homogénéité et d'éviter le saupoudrage des travaux ; par ailleurs, la taille des chantiers a une influence directe sur le coût.

UN BUDGET ADAPTÉ

Le linéaire de réseau entretenu et/ou réhabilité chaque année doit être compatible avec la longueur totale du réseau (ou sa surface), la durabilité des techniques utilisées et les niveaux de service adoptés par le maître d'ouvrage.

Merci de votre attention